Gabriel González Pavón: “La tecnología del Instituto de Instrumentación para la Imagen Molecular (I3M) es sin duda la mejor tecnología del mundo y, en muchos sentidos, exclusiva para poder tener una imagen en tiempo real en el quirófano”

El director médico de Onconvisión explica cómo nace la Cámara Sentinella desarrollada por el I3M

Gabriel González Pavón / Foto: cedida por Gabriel González Pavón

Gabriel González Pavón, licenciado en medicina y cirugía por la Universidad de Barcelona es el director médico de Oncovisión, empresa líder en desarrollo y comercialización de equipos para diagnóstico por imagen y tratamiento del cáncer. Entre sus productos clínicos incluye una gamma cámara intraoperatoria única en el mercado denominada Sentinella y un revolucionario equipo para el diagnóstico del cáncer de mama llamado Mammi PET, ambos desarrollados originalmente por el Instituto de Instrumentación para la Imagen Molecular (I3M).

¿Cuál es el origen de Oncovisión?

El nombre oficial de la empresa Oncovisión es Gen-Imaging S A. Oncovisión es un Spin-off  del Instituto de Instrumentación para la Imagen Molecular (I3M) que dirige el profesor José María Benlloch, aunque originalmente la transferencia de tecnología se hacía desde el Instituto de Física Corpuscular (IFIC), anterior instituto al que pertenecía el profesor. Esta spin-off es una empresa que no hubiera surgido si no existiera la tecnología original común a la gamma cámara Sentinella y el PET (por las siglas en inglés de Positron Emission Tomograhy) dedicado al diagnóstico del cáncer de mama que se llama Mammi, y también en la investigación pre-clínica en equipos llamados Albira.  La tecnología del I3M se ha transferido y se ha  convertido en productos que se están comercializando en más de cuarenta países alrededor del mundo. En el caso de Sentinella se ha utilizado con éxito en más de cien mil pacientes con cerca de treinta tipos  de cáncer.

¿Qué es lo que hace que estos equipos sean mejores que otros utilizados en el mismo campo?

La cámara Sentinella es el componente principal de un equipo para hacer cirugía radioguiada, y permite  ver cuál es la extensión de tumores malignos. El proceso consiste, en primer lugar, en utilizar una inyección de material radioactivo de muy baja dosis sobre la zona donde está el tumor. La manera en que el organismo de las personas se defiende de tumores e infecciones se parece a los compartimientos casi estancos de los barcos, que corresponderían a las partes de nuestro cuerpo.  Cada zona está vigilada por uno o varios ganglios linfáticos. Cuando hay un tumor en cualquier órgano del cuerpo se inyecta en la zona apropiada a cada caso esa pequeña dosis de radiación, que es equivalente a la que se recibe tomando el sol durante pocas horas en la playa, con lo que incluso se puede utilizar en mujeres embarazadas, ya que carece de daño potencial. Esa inyección de radiación va a drenar a los ganglios linfáticos del área a la cual se ha aplicado la dosis, para permitir a la cámara Sentinella detectar si el tumor ha drenado a esos ganglios, lo que se confirma realizando una biopsia de cada uno de ellos. El sistema de drenaje de los tumores es primero a los ganglios locales y luego a ganglios regionales más lejanos; si el tumor no ha drenado a los ganglios locales esto quiere decir que no se ha extendido. Por eso la cirugía radioguiada es mínimamente invasiva, al evitar tener que quitar todos los ganglios linfáticos para analizarlos y solo extirpar aquellos a los que pudo haber drenado el tumor.

¿Cuál es el procedimiento al que sustituye la cámara Sentinella?

Si tomamos como ejemplo lo que se hacía antes en un tumor en la mama, el procedimiento previo era extirpar el tumor de la mama o la mama completa y quitar la mayoría de los ganglios de la axila. Se estaba trabajando de una manera muy agresiva. Se producía con mucha frecuencia un problema denominado Linfedema, que es cuando se bloquea el drenaje de los vasos linfáticos y se acumula líquido, en este caso en el brazo del lado en el que se quitaron los ganglios de la axila. Muchas mujeres, tras la extirpación de tumores de mama se producían un Linfedema que podía llevar el brazo a tener casi el diámetro de la pierna, algo muy molesto, e incluso causar discapacidad. La cámara Sentinella permite encontrar cualquier ganglio linfático, por pequeño o profundo que sea, evitando las alternativas más primitivas que eran las cirugías ‘a ojo’ basándose en conocimientos anatómicos.  Cada persona es diferente, y con Sentinella se puede hacer por fin cirugía a medida.

“La cámara Sentinella  permite encontrar cualquier ganglio linfático por pequeño o profundo que sea, evitando las alternativas primitivas que eran las cirugías ‘a ojo’ basándose en conocimientos anatómicos. Con Sentinella se puede por fin hacer cirugía a medida” 

¿Cuándo nace la cámara Sentinella y quiénes intervinieron directamente en su fabricación?

Lo que se llama prueba de concepto se produjo entre el año 2003 y el año 2006.Tras obtener aprobaciones regulatorias y cuando ya se había evaluado en hospitales en Valencia y Barcelona, pasó a utilizarse también en Madrid y otras ciudades de España, confirmando que hacia una aportación clínica muy importante en numerosos tipos de cáncer. Es entonces cuando la empresa Gen-Imaging cambió a una denominación más comercial, más práctica (Oncovisión). Encontró financiación de capital riesgo (la empresa Española Bullnet Capital) para poder desarrollar el negocio y convertir los prototipos en productos que cumplieran con los estándares exigidos, que se fabricaran de una manera fiable y segura y, sobre todo, que tuvieran en cuenta todas las normas de seguridad internacionales, a la vez que fueran fáciles de usar. El modelo original fue creado por el profesor José María Benlloch y su equipo y el trabajo de desarrollo posterior se hizo desde Oncovisión con cirujanos y médicos nucleares de todas partes de España.

¿Cuántos equipos  de cámara Sentinella se están utilizando actualmente a nivel mundial?     

En España, la cámara está instalada en 38 y en el resto del mundo hay más de cien aparatos al servicio de instituciones de gran prestigio en la Unión Europea, Estados Unidos, Australia, Japón, China y en algunos países de América Latina y Oriente Medio. Nos gustaría que fuera algo a lo que tuvieran acceso pacientes de todo el mundo, y por ello pensamos que nuestro éxito ha sido limitado. Aunque cada año se van instalando numerosos equipos, nos gustaría poder abarcar más, para poder ayudar a más personas, y en ello estamos. Oncovisión era una PYME, empresa pequeña, pero ha ido creciendo y desarrollando otras líneas con las mismas tecnologías, que trabaja directamente en algunos países y en otros lo hace a través de distribuidores. La innovación continuada resulta capital para introducir mejora prácticas, según las van proponiendo médicos nucleares o cirujanos. La nueva tecnología ayuda a que las personas puedan vivir más y mejor, y este es un buen ejemplo. En manos de expertos, Sentinella ayuda a las personas afectadas a superar sus tumores malignos. Es una de esas innovaciones que tienen cada día un impacto enorme para la vida.

¿Cómo describiría usted el trabajo realizado por el doctor José María Benlloch y el I3M?

La historia del profesor José María  Benlloch y la innovación que él ha sido capaz de desarrollar en España, en base a su formación y experiencia como físico en el Laboratorio Europeo de Física de Partículas Elementales (CERN) en Ginebra, en Massachusetts Institute of Technology (MIT) y en Fermi National Accelerator (Fermilab) en los Estados Unidos y en muchos otros lugares es una de esas historias de las que yo siempre he sido admirador y de la que estoy muy orgulloso de formar parte, porque se ha ayudado a miles de personas y se ha reconocido el mérito de un brillante investigador. El profesor Benlloch ha sido reconocido, entre otros, con el premio de la Fundación Rey Jaime I en la modalidad  “Nuevas Tecnologías” y también con el Premio Nacional de Investigación “Leonardo Torres Quevedo”, del máximo prestigio. I3M es hoy sin duda uno de los mejores centros de imagen molecular del mundo y el profesor Benlloch, su director, siempre ha tenido claro que lo vital en la innovación científica y tecnológica es que tenga una aplicación práctica, su transferencia a la industria, creando futuro, empleo y riqueza. Con esta transferencia, la investigación más avanzada y la ciencia están al servicio de la vida de las personas.

José María Benlloch: “Investigación biomédica hay de muy alta calidad, desafortunadamente no siempre saca partido la industria española”

La actividad del Instituto de Instrumentación para la Imagen Molecular (I3M) narrada por su director    

José María Benlloch / Foto: cedida por José María Benlloch

José María Benlloch es el director del Instituto de Instrumentación para la Imagen Molecular (I3M) actualmente, aunque su formación en física nuclear y de partículas difiere a lo que hace el instituto, Benlloch cuenta con una destacada carrera como investigador tanto fuera como dentro del I3M. Se doctoró en física de partículas en el Laboratorio Europeo de Física de Partículas Elementales (CERN). Su tesis doctoral consistió en los primeros datos obtenidos de un experimento de colisión de electrones y positrones acelerados a muy alta velocidad y energía. Para medir los resultados del experimento se utilizó un detector parcialmente creado en Valencia; a partir de estos datos, se concluyó la existencia de tres generaciones de neutrones ligeros y también se infirió de forma indirecta la existencia de una partícula elemental llamada quark top. Tras concluir su primera estancia post doctoral en el Fermi Nacional Accelerator Laboratory (Fermilab) en Estados Unidos regresó a España y se dio cuenta de que lo que aprendió en  detectores de partículas podría ser bastante útil para la medicina.

¿Cuál es el propósito a largo plazo de la actividad que realizan como institución?

A nosotros lo que nos gustaría a largo plazo es cada vez tener mayores ideas y contribuir al diagnóstico, a un diagnóstico mejor, más preciso y anterior, más precoz de distintas enfermedades. Estamos fundamentalmente interesados en el cáncer pero también en enfermedades mentales, tenemos un proyecto europeo que coordinamos nosotros de detección temprana de esquizofrenia y de otros problemas mentales como la depresión severa e incluso en el futuro nos gustaría contribuir al tratamiento. Estamos empezando a hacer algunas cosas con ultrasonidos y con nanoparticulas.

“Estamos fundamentalmente interesados en el cáncer pero también en enfermedades mentales, tenemos un proyecto europeo que coordinamos nosotros de detección temprana de esquizofrenia y de otros problemas mentales como la depresión severa e incluso en el futuro nos gustaría contribuir al tratamiento”

El instituto tiene su origen en la física de partículas. ¿Es una iniciativa de la Universidad Politécnica de Valencia o tiene algún otro origen?

Es una iniciativa del rector de la Universidad Politécnica de Valencia (UPV) y del Consejo Superior de Investigaciones Científicas (CSIC), al que yo pertenezco. Anteriormente yo pertenecía a otro instituto del CSIC, el Instituto de Física Corpuscular (IFIC), entonces en ese sentido también tiene origen en ese instituto que se dedica justamente a la física de partículas y donde hice mi tesis doctoral y me formé inicialmente, luego continué mi formación en el CERN y en el Fermilab en Estados Unidos. Posteriormente el rector de la Universidad Politécnica de Valencia, el CSIC, el delegado del CSIC en Valencia y el presidente del CSIC llegaron al acuerdo de crear este instituto.

¿Cuánto tiempo llevan en esta actividad? 

En la actividad del PET llevamos aproximadamente desde el año 1998, es decir,  casi veinte años. Otras líneas de investigación son más recientes, hemos trabajado alrededor de 3 años en resonancia magnética y en ultrasonido un año a partir de la incorporación de una persona que había estado algún tiempo investigando en ese campo; en rayos X, TAC, etc, llevamos mucho tiempo, a lo mejor unos diez o doce años.

¿Cuentan con el apoyo de alguna institución privada?

Contamos con financiación privada a través de proyectos y contratos, tenemos muchos contratos de empresas privadas para desarrollar equipamiento.

¿El personal que conforma el instituto tiene una formación en física o cuentan con personas que se dedican a la ciencia médica?

Tenemos muchos físicos en el instituto e ingenieros, fundamentalmente ingenieros electrónicos e informáticos y algún ingeniero mecánico. Médicos desafortunadamente no tenemos en el instituto, sin embargo trabajamos conjuntamente con ellos en los hospitales, es decir, nosotros pensamos que es de vital importancia trabajar con los médicos porque al final son los usuarios de los aparatos que desarrollamos por lo cual es importante que desde el principio intervengan en el diseño para que sea ergonómico y para que sea útil. Entonces sí trabajamos con médicos, pero no dentro del instituto.

¿Cuáles son los hospitales de Valencia que colaboran con el instituto?

El Hospital la Fe de Valencia es un hospital que comparte actividades de investigación con la Universidad Politécnica de Valencia y la Universidad de Valencia, pero también hemos trabajado con el Hospital Clínico, con el Hospital General y con el Hospital Universitario Doctor Peset. Fuera de Valencia también hemos colaborado con muchos hospitales, en  Europa y en Estados Unidos; en Europa con el Netherlands Cancer Institute que está en Amsterdam  y se dedica a la oncología, también con la Universidad de Karolinska (Instituto Karolinska) de Estocolmo y en Estados Unidos con el Massachusetts General Hospital, con la Clínica Mayo, es decir, hemos colaborado con muchos hospitales también.

¿Los equipos que han fabricado están siendo implementados o están en una etapa de desarrollo o de investigación?

Estamos en una etapa de desarrollo en la parte de tratamiento, en la parte de diagnóstico hay muchos equipos que están ya en los hospitales.

¿Puede mencionar algún equipo que ya esté siendo utilizado?  

El primer equipo que hicimos era una cámara pequeñita, una gamma cámara para la detección del ganglio centinela en intraoperatorio, esto lo utilizan los cirujanos para encontrar rápidamente dónde están los ganglios durante la intervención quirúrgica. Los ganglios están conectados directamente con el tumor y por lo tanto podrían tener una metástasis tumoral. Este aparato se encuentra en muchos hospitales de España, diría que por lo menos treinta hospitales de España lo tienen y también fuera de España, a lo mejor en total puede haber ciento cincuenta hospitales que tienen esta cámara. También existe un mamógrafo que desarrollamos aquí para la detección de tumores mamarios y está siendo implementado en muchas partes del mundo como por ejemplo China, Japón, Taiwán y Singapur.

¿España se encuentra en este momento bien posicionada en cuanto a investigación en el campo de la medicina?  

En el campo de la medicina desde luego hay muchos investigadores excelentes y en el campo biomédico; de hecho en España la mayoría se dedica al campo biomédico, en cambio lo nuestro es más bien ingeniería, ingeniería biomédica y no la pura biomedicina. Investigación biomédica hay de muy alta calidad, desafortunadamente no siempre saca partido la industria española, sino que de estas investigaciones se favorece muchas veces la industria extranjera; en la actualidad esto está empezando a cambiar, comienzan a surgir empresa biomédicas en España. Con relación a la ingeniería biomédica o física médica también está muy bien posicionada, no solo por nuestro instituto también por otros grupos de España reconocidos internacionalmente.

César David Vera-Donoso: “Nosotros, por suerte, tenemos la ventaja de contar con el I3M, que es un centro muy potente de científicos, para encontrarle soluciones a los problemas de los enfermos”

El coordinador del Comité de Tumores Urológicos del Hospital La Fe cuenta su experiencia como colaborador del Instituto de Instrumentación para la Imagen Molecular (I3M) y como usuario de la Gamma Cámara Sentinella

Dr. Vera-Foto/Unidad de Comunicación del Departamento de Salud del Hospital La Fe de Valencia. Foto: cedida por el Dr. Vera

Desde el año 1992, coordina el Comité de Tumores Urológicos del Hospital Universitario y Politécnico La Fe de Valencia y, desde el año 1990, forma parte del Equipo de Trasplante Renal del mismo hospital. Su tiempo no asistencial lo dedica a la investigación traslacional en busca de soluciones a los problemas de sus pacientes, a la vez que coordina un grupo multidisciplinar que integra 4 áreas de investigación, en colaboración con el Centro de Investigación Príncipe Felipe (Laboratorio de Regeneración Tisular y Neuronal) y la Universidad Politécnica de Valencia (Instituto de Ciencia y Tecnología Animal, Instituto de Tecnología QuímicaConsejo Superior de Investigaciones Científicas CSIC e Instituto de Instrumentación para la Imagen Molecular I3M).

Ha sido usuario de la cámara Sentinella desarrollada por el Instituto de Instrumentación para la Imagen Molecular (I3M) durante mucho tiempo ¿Cuándo comienza exactamente a utilizar esta herramienta?

Comenzamos a utilizar esta herramienta en la rutina clínica aproximadamente en el año 2013, cuando iniciamos nuestra validación de la técnica de ganglio centinella en el cáncer de próstata, en el Hospital Universitario y Politécnico La Fe de Valencia. En el Servicio de Urología, al que yo pertenezco, y en el cual dirijo el Comité de Tumores Urológicos apostamos por la cirugía radioguiada; es decir, la cirugía en la cual el médico se encuentra guiado por la señal que emiten los trazadores que hemos inyectado al paciente con anterioridad. Es una técnica que está en auge en muchos campos. En ella introducimos un trazador en la próstata del paciente por vía transrectal, denominado tecnecio 99 (99Tc), que nos va a marcar la diseminación del trazador y nos va a pintar los ganglios linfáticos, denominados ganglios centinella; estos son los primeros ganglios donde teóricamente podría derivar el cáncer de próstata, en caso de que se diseminara por vía linfática. Para ello, utilizamos la gamma cámara en diferentes fases del procedimiento. El día que inyectamos el trazador (99Tc), lo hacemos bajo guía doble de imagen; por una parte, un ecógrafo transrectal nos identifica la próstata y por otra parte, la gamma cámara sentinella nos permite visualizar que el trazador quede perfectamente incorporado dentro del tejido prostático, sin fuga hacia la vejiga o hacia otras estructuras anatómicas. Al día siguiente, es cuando operamos al paciente utilizando la gamma cámara Sentinella, para localizar en primera instancia todos los ganglios centinella que hemos de extirpar. Es como si fuera una visión del google map, y con esa información comenzamos a trabajar guiados por un contador geiger, que es una sonda gamma que indica la coincidencia de la información que nos da la Sentinella y que nos da el SPECTAT que es hecho el día anterior. Ese ha sido el uso inicial de la gamma cámara sentinella en nuestra especialidad.

¿Qué ventajas se han obtenido a partir de su implementación que quizás no existían antes de su utilización?

Con respecto a las técnicas usuales de linfadenectomía, es decir, en la extirpación de los ganglios linfáticos, en el cáncer de próstata, permite ahorrar 3 de cada 4 linfadenectomías. Te ahorras en 3 de cada 4 pacientes una hora o cuarenta minutos de cirugía, eso es dinero pero también te ahorras la morbilidad o efectos secundarios del procedimiento. Una linfadenectomía es extirpar todo ganglio linfático que usualmente va adherido a los grandes vasos sanguinos iliacos, es un procedimiento que tiene sus efectos secundarios y tiene sus riesgos. Si te ahorras 3 de cada 4 pacientes en realizar toda deserción quirúrgica, evitas problemas.

Usted ha formado parte del Hospital La  Fe durante casi tres décadas. ¿Conoce de cerca la actividad de investigación  que comparte el Hospital La Fe con el I3M y Universidad Politécnica de Valencia?

Efectivamente, ¡qué mayor estoy! .Casi tres décadas, porque entré de residente a este hospital, aunque yo soy de América. Mi tiempo no asistencial en el hospital lo dedico a la investigación; tengo un grupo propio de investigación, en el cual están incorporados varios miembros del Instituto de Instrumentación para la Imagen Molecular (I3M). Hay médicos nucleares, hay biólogos, hay químicos y profesionales de diferentes área de la investigación, para conseguir objetivos multidisciplinares que nos integran para un propósito común. La investigación se realiza desde el Instituto de Investigación Sanitaria del Hospital La Fe, es decir, que el canal adecuado e imprescindible es el Instituto; sin embargo, yo estoy en el hospital porque soy médico y cirujano urólogo y toda mi actividad asistencial con pacientes es la del hospital.

¿Por lo tanto no tiene nada que ver con las investigaciones que hace el I3M directamente, solamente es usuario de los aparatos que ellos desarrollan?

No, justamente lo contrario. Esto es una visión nueva, me encuentro trabajando en un proyecto de investigación con el I3M, teniendo en cuenta que el I3M está lleno de gente maravillosamente formada, gente con mucha potencialidad científica. Pero los que tenemos los problemas somos los médicos y los pacientes, estamos en la primera línea de batalla con  los padecimientos; pues el médico es el que tiene que generar la inquietud en los investigadores básicos y en los científicos, para resolver los problemas que tenemos con los pacientes. Nuestra aportación con los pacientes es realmente de inicio y vamos acompañando a los científicos en el desarrollo de soluciones, es decir, el científico no sabe los problemas que tenemos nosotros, lo sabemos nosotros y lo sufre el enfermo; entonces, esas limitaciones son las que va a resolver el científico de manera colegiada con los médicos que estamos en la práctica diaria. Esto es un camino muy interesante, no es nuevo, porque se ha hecho desde hace un siglo pero por muy poca gente. Nosotros, por suerte, tenemos la ventaja de contar con el I3M, que es un centro muy potente de científicos, para encontrarle soluciones a los problemas de los enfermos. Entonces, nosotros planteamos los problemas y ellos van desarrollando las soluciones, nosotros vamos adaptándolas y vamos probándolas a ver en qué termina la idea. Es un campo precioso de colaboración, yo no soy un usuario común del tema, trabajo generando ideas junto a ellos y en la gamma cámara sentinella misma, en el año 2004 o 2003, estuve en las publicaciones porque ya comenzábamos a ver para qué podía servir.

¿Considera usted que la tecnología para el diagnóstico médico se está desarrollando conforme a la necesidad actual o piensa que hace falta mayor inversión? 

Inversión hace falta siempre. En ese sentido el sistema americano tiene una ventaja, y es que nos permite desarrollar muchas más soluciones. Aquí, en Valencia, la verdad es que estamos consiguiendo avanzar en muchos detalles, en varios campos de investigación. En las líneas en las que yo trabajo nos cuesta muchísimo conseguir fondos, pero tenemos la ventaja de la alianza con el I3M que es un grupo muy potente de investigación, con mucha inquietud, con mucho prestigio, y juntos vamos avanzando. Podría decir que siempre son necesarios fondos que apoyen la investigación, pero también hay que decir que no podemos quejarnos. Vamos avanzando poquito a poquito en desarrollo y creemos que serán importantes.

“En las líneas en las que yo trabajo nos cuesta muchísimo conseguir fondos, pero tenemos la ventaja de la alianza con el I3M que es un grupo muy potente de investigación, con mucha inquietud, con mucho prestigio, y juntos vamos avanzando”

¿Hasta qué punto la tecnología está suponiendo una herramienta fundamental para la lucha contra el cáncer, es decir, está cumpliendo su rol o usted piensa que podría mejorarse?

La tecnología está avanzando de modo adecuado. Aunque también creo que falta interacción entre los médicos como usuarios finales y los científicos que generan tecnologías, para que trabajen en conjunto; de esta manera se puede aprovechar al máximo el recurso material que existe, es decir, los fondos. Naturalmente, un científico que está en su laboratorio no percibe lo que buscamos con los enfermos, no lo puede percibir porque no lo ve. Nosotros los médicos, en mi caso que trabajo con el cáncer, veo cómo pierdo pacientes por esta enfermedad, eso supone un feedback muy especial que nos retroalimenta para seguir intentando la búsqueda de tratamiento y de diagnóstico temprano.

Están desarrollando un nuevo proyecto con el I3M. ¿En qué consiste?

Con el I3M llevo 4 o 5 líneas de investigación. Estamos bastante avanzados en el diseño de un PET (por las siglas en inglés de Positron Emission Tomography), tomógrafo emisión de positrones portátil dedicado solamente a la próstata, para generar imágenes fiables del cáncer de próstata. Este es un problema relavante que tenemos, porque el cáncer de próstata no nos da una imagen médica segura para tratarlo. Por lo tanto, en estos momentos, en la práctica médica diaria, hay que quitar o hay que irradiar toda la próstata, porque no sabemos cuál es el volumen del tumor. Con el proyecto denominado PROSPET, estamos intentando conseguir una imagen fiable de lo que es este tipo de cáncer.

¿Cuál es su rol fundamental en el proyecto? 

Yo soy el principal coordinador del proyecto, que está financiado por el Instituto Carlos III de Madrid, el Ministerio de Economía y los Fondos Europeos de Desarrollo. Parte de la idea es nuestra. Coordino al grupo de físicos del I3M y el Consejo Superior de Investigaciones Científicas (CSIC) de España,  a los investigadores del Hospital La Fe, los médicos nucleares, los radiofísicos y urólogos. También estoy coordinando las discusiones y la elaboración de los modelos. Hemos hecho tres versiones de modelos, así avanzan los proyectos y los ensayos, hasta que lleguemos a un modelo final. Cuando ya esté listo el dispositivo final tenemos que hacer las validaciones clínicas. Pero la verdad es que es una interacción, nos reunimos, vienen todos los físicos del I3M, los médicos nucleare y los urólogos, nos sentamos alrededor de una mesa y vamos discutiendo como  avanza el proyecto.

Decálogo de recomendaciones para mejorar la relación entre periodistas y científicos amantes de la divulgación científica

La propuesta ha sido elaborada por el grupo de estudiantes del Máster de Historia de la Ciencia y la Comunicación Científica, a partir de un trabajo colaborativo. El grupo, formado tanto por científicos como por comunicadores, debatió y analizó aspectos que influyen en la calidad de la información científica que se publica, con el objetivo de proponer este listado abierto a la reflexión y al debate. 

  1. Debe fomentarse la especialización periodística en distintas disciplinas científicas, concretamente la figura del periodista científico.
  2. Los periodistasm al decodificar el lenguaje técnico que utilizan los científicos para adaptarlo al público deben, en la medida de lo posible, no distorsionar la información original que proporciona el científico. Además de contextualizar dicha información para que el lector de esa noticia sepa de qué se está hablando y pueda entender el mensaje que se está lanzando.
  3. Nunca pecar de falta de rigurosidad en el tratamiento de una temática. Para ello las y los periodistas deben dedicar un tiempo suficiente en consultar fuentes fiables.
  4. La comunidad científica debería poner más en valor la divulgación social de la ciencia. Y no centrar únicamente la difusión del conocimiento a una esfera de expertos y expertas -con las revistas científicas especializadas-
  5. Debe mantenerse un consenso entre investigadores y periodistas, para que se genere una difusión de la ciencia que no conlleve al desentendimiento entre los actores (periodista-científico) y el público.
  6. En caso de querer/necesitar acompañar el texto de imágenes, éstas deben ser coherentes con el texto y no proporcionar información contradictoria al lector.
  7. No caer en excesivas trivialidades a la hora de trasladar un tema a los lectores, para evitar banalizarlo. Además, los titulares de las noticias deben ser lo más precisos posibles y evitar el sensacionalismo.
  8. Dar voz a fuentes expertas, de manera que las figuras políticas no les quiten el protagonismo que les corresponde.
  9. Potenciar, en la medida de lo posible, la vertiente educativa de la divulgación científica, que permite acercar la ciencia a la sociedad de forma didáctica, entretenida y rigurosa.
  10. El/la periodista científica debe siempre hacer contraste de fuentes, para así evitar que la importancia de la fuente escogida empañe de alguna forma la calidad de la información científica que se transmita.

Autores: Nicolás D’ Opazo Gallego; Omar Alfonso Bohórquez Pacheco; Lourdes Lloret Mayor; Maria Isabel Fuentes Daras; Juan Retamino Almansa; Laura Andrea Aceituno Castillo; Sara Moreno Tarin; Antonio Tejada Gonzalez