La posible liberalización de la Política Agraria Común afectará al buitre negro

Investigadores del CSIC predicen que un cambio en el paisaje alteraría el hábitat de la especie. 

Un equipo de investigación de la Estación Biológica de Doñana ha demostrado que la posibilidad de liberalización de la Política Agraria Común (PAC) afectará a la distribución del buitre negro, una especie carroñera típica del ecosistema mediterráneo. La PAC es una política de la Unión Europea que pretende garantizar a los agricultores un nivel de vida razonable mediante la concesión de ayudas, apoyo en el mercado y desarrollo rural. “La liberación de la PAC supondría una reducción de las ayudas y subvenciones a agricultores y esto conllevaría un aumento del abandono de tierras y una sucesión natural de la vegetación”, ha apuntado Isabel García Barón, una de las autoras de la investigación.

“En esta situación, las tierras abandonadas se transformarían con el tiempo en bosques maduros”, ha comentado. “Esto beneficiaría el hábitat de cría del buitre negro, pero quedaría afectado su hábitat de forrajeo, es decir, la probabilidad de conseguir alimento, ya que el conejo, importante en su dieta, estaría menos disponible en este tipo de hábitat”, ha añadido.

El estudio se centra en el empleo de diferentes modelos socioeconómicos de previsión de abandono de tierras.  Su objetivo es evaluar cómo se verá afectada la distribución de esta especie en 2040. “Los modelos nos dicen que el cambio de la PAC será crucial para ver transformaciones en el paisaje que afecten al buitre negro”, ha agregado la investigadora.

El buitre negro se encuentra amenazado por el uso de venenos. Fuente: National Geographic

El mantenimiento de la PAC en la línea actual no provocaría el abandono de tantas tierras ya que se mantendrían las ayudas. “Sin embargo, hay otros factores, como los incendios forestales o la presencia de depredadores, que también pueden afectar al hábitat de cría y forrajeo del buitre negro y que es preciso estudiar”, explica la experta. García-Barón ha apuntado que aunque el buitre negro vería afectado su hábitat de forrajeo con la proliferación del bosque maduro, sus movimientos amplios le permitirían recorrer distancias largas para conseguir alimento. La investigadora ha explicado que los incendios forestales mejorarían el hábitat del conejo, ya que existirían más zonas libres de vegetación en las que el conejo podría vivir.

Aunque según los modelos nuevas áreas se vuelvan aptas para albergar estas especies, es probable que “la colonización no ocurra a corto o medio plazo”, ha concluido la investigadora. El trabajo es de “gran importancia” ya que es “la primera vez que se hace este tipo de estudios con una especie carroñera, y también, amenazada” y además, se tiene en cuenta “la biología de la especie”.

El estudio, que ha contado con la financiación de la Consejería de Innovación, Ciencia y Empleo de la Junta de Andalucía, ha sido realizado por un equipo de investigación de la Estación Biológica del Doñana, centro del CSIC.  El trabajo se ha publicado en la revista Diversity and Distribution y cuenta con la colaboración de centros de investigación de cuatro países europeos.

 

Pablo Huertas, investigador y profesor de Genética

“Es muy difícil competir en la Champions League con un presupuesto de segunda”

Fue seleccionado en 2015 como uno de los 23 jóvenes científicos más destacados, y el único español, por la Organización Europea de Biología Molecular (EMBO).

El investigador Pablo Huertas, en su laboratorio. Fuente: Ayuntamiento de Umbrete

La investigación científica en España no atraviesa su mejor momento. Los recortes y la falta de estabilidad obligan a muchos jóvenes investigadores a abandonar el país, en busca de mejores condiciones.

Pablo Huertas es un reconocido joven científico en el campo de la genética. Actual profesor de la Universidad de Sevilla, adscrito al Departamento de Genética y al Centro Andaluz de Biología Molecular y Medicina Regenerativa (Cabimer), se licenció en Biología por esta Universidad, donde hizo su tesis en dicho departamento. En 2004 comenzó una estancia postdoctoral en el Gurdon Institute de la Universidad de Cambridge y seis años después, regresó a Sevilla con una beca Ramón y Cajal, año desde el que dirige un grupo de investigación en Cabimer. En 2016 además fue galardonado con el Premio Manuel Losada Villasante en la categoría de Excelencia en la Investigación Científica. Desde su despacho, y con la experiencia de un investigador que ha vivido en el extranjero, nos cuenta la complicada situación actual de la investigación en España, en comparación con la de otros países.

Pregunta:  Desde muy pequeño, ya tenía claro que quería ser científico, ¿considera que la vocación es importante para esta profesión?

Respuesta: Sí, por una sencilla razón. Esta profesión a veces es muy “injusta” ya que sueles pasar mucho tiempo intentando descubrir algo y finalmente darte cuenta de que estabas equivocado. Sin vocación es fácil frustrarse y muy difícil lidiar con esa frustración.

P: Su grupo se encarga de estudiar los mecanismos de la célula para reparar el ADN que se ha roto. ¿En qué línea se está investigando actualmente?

R: Nuestro grupo trabaja principalmente en investigación básica. Intentamos entender los mecanismos de reparación del ADN, y tangencialmente, debido a su importancia en el desarrollo de enfermedades, su implicación en cáncer y enfermedades raras.

P: Su grupo ha descubierto la causa genética de los síndromes de Jawad y Seckel, ¿a qué se deben estas enfermedades raras?

R:  Ambos casos se deben a mutaciones (modificaciones) puntuales en el mismo gen, que provocan la aparición de una proteína más pequeña de lo normal. Esta proteína tiene varias funciones, y al perder un fragmento específicamente pierde su función en la reparación del ADN. Esto hace que las células que la expresan no puedan en muchos casos lidiar con las lesiones en el ADN que ocurren de manera normal y se mueran, provocando defectos de desarrollo.

«Empiezas a restarle importancia a las limitaciones para dársela a las ideas»

P: Realizó una estancia postdoctoral en Cambridge. ¿Qué le ha aportado desarrollar su profesión en el extranjero?

R: A nivel personal, trabajar en el extranjero permite ver las cosas de una manera muy diferente a la que habitualmente estamos acostumbrados. Este tipo de experiencias te abre bastante la mente. Desde el punto de vista profesional, estar en un lugar de primer nivel donde la financiación no supone un problema, y los recursos son casi ilimitados, te permite crecer como científico. Empiezas a restarle importancia a las limitaciones para dársela a las ideas.

P: ¿Cree que es muy diferente la investigación en España, con respecto a otros países?

R: La formación en nuestro país es muy buena, equiparable a la de otros países, y hay mucho talento. La principal diferencia con otros países se encuentra en la financiación. No es lo mismo supeditar tu investigación al dinero del que dispones, que contar con una financiación prácticamente ilimitada que te permita realizar muchas más cosas. Es muy difícil competir en la Champions League con un presupuesto de segunda.

P: Una buena parte de la labor del científico, a parte del trabajo en el laboratorio, debe ser la obtención de financiación…

R: Sí, totalmente. De hecho dedico la mayor parte de mi tiempo y esfuerzo a conseguir financiación para para poder hacer los experimentos que tenemos planeados. La falta de dinero supone una barrera importante para la investigación. Por poner un ejemplo, hace poco conocí la historia de un joven que había conseguido una beca de un programa de investigadores emergentes en Holanda. Para empezar el proyecto le concedieron una cantidad de medio millón de euros, algo a lo que ni el mejor de los científicos de nuestro país tendría acceso. Eso es lo principal que nos diferencia con respecto a otros países.

Pablo Huertas junto a sus compañeros en Cabimer. Fuente: Cabimer

P: En 2015 recibió una notable distinción por parte de la Organización Europea de Biología Molecular (EMBO). ¿Qué ha significado para su grupo la concesión de esta ayuda?

R: Esta ayuda no es la típica ayuda económica que se concede  a los proyectos, sino más bien una distinción de calidad que le proporciona una mayor visibilidad al grupo. Esto facilita la colaboración de nuestro grupo con otros grupos de investigación del mismo campo y la asistencia a conferencias y congresos, entre otras cosas. Gracias a ella, algunos miembros de mi laboratorio han asistido a distintos congresos. Por otra parte, anualmente se realiza un curso al que asisten doctorandos en el European Molecular Biology Lab (EMBL) en Heidelberg, Alemania. En él aprenden muchas cosas que aquí, por la disponibilidad de recursos, no podrían.

La ayuda también consta de una parte económica de 15000 euros, que son de libre disposición. Es decir, el presupuesto no solo puede destinarse a cuestiones puramente científicas relacionadas con el proyecto y como es lo habitual en las partidas presupuestarias que se conceden, sino para contratación de personal o equipamiento informático, por poner algunos ejemplos.

P: Los recortes en investigación han complicado la situación…

R: Cuando empecé en 2010 con mi grupo del Cabimer, ya estaban haciendo recortes, por lo que apenas he notado la limitación de la financiación nacional.  Pero a nosotros también nos ha afectado. Hay que estudiar muy bien lo que se quiere hacer, porque hay experimentos que son muy caros, y a menos que tengan una justificación muy potente, no se pueden realizar. De hecho, a veces para aportar esa justificación se requiere de un bagaje importante de información previa, algo que precisa de tiempo y esfuerzo.

«La enorme inversión en la formación del talento de nuestro país acaba convirtiéndose en un desperdicio»

P: Muchos jóvenes se ven obligados a emigrar en lo que se ha dado a conocer como “fuga de talentos”. ¿Le gustaría trasladar algún mensaje a las administraciones?

R: El problema de las administraciones es que son muy “cortoplacistas”. Parece que no se percatan de que la enorme inversión en la formación del talento de nuestro país acaba convirtiéndose en un desperdicio. Se emplea gran cantidad de dinero en formación mediante becas predoctorales y doctorales, que no tiene una posterior repercusión económica o social en nuestro país. Los mejores científicos se van a otros sitios y apenas hay atracción de talento exterior.

Una vez en el extranjero, las trabas administrativas son tan grandes que hacen que finalmente no regresen, ya que además tienen trabajos muy bien valorados y renumerados. El caso de Gran Bretaña es el contrario, pero se beneficia de nuestra situación. En general existe poca inversión allí, pero suele atraerse mucho talento exterior.

P: ¿Cómo de complicado ve para un científico compaginar la vida laboral con la familiar?

R: Es complicado, porque el trabajo del científico no tiene horarios, pero se debe hacer un esfuerzo para mejorar la conciliación de trabajo y familia.  El no tener horarios podría tener la ventaja de poder trabajar desde casa, aunque esto sería imposible si trabajas en el laboratorio.  La realidad es que el trabajo es muy absorbente. Hay experimentos que requieren un tiempo largo, y te encuentras supeditado a esos tiempos. De cualquier forma, no creo que se deba llevar el trabajo a casa, y la familia ayuda mucho en este aspecto ya que te “obliga” a desconectar.  En ese sentido, creo que la familia favorece mucho la labor del científico.

P: Siempre le gusta recalcar a sus estudiantes la importancia de la ciencia y de la divulgación, ¿por qué considera la divulgación tan importante?

R: Por un lado, creo que hay mucho talento en este país. La divulgación de la ciencia posibilita que todas aquellas personas que no son conscientes de que les gusta la investigación, inicien  carreras investigadoras.

Por otra parte, y aunque exista una escasa percepción de ello, el dinero que recibimos los científicos es dinero público. Nuestro trabajo se paga con los impuestos de todos, por lo que creo que estamos obligados a fiscalizar lo que hacemos delante del público, es decir, a divulgar. Debemos estar obligados a contarle al público que su dinero se está invirtiendo correctamente y todo lo que se está consiguiendo con él.

Esa baja percepción se debe a que los científicos no hacemos un gran esfuerzo por divulgar. En el sistema anglosajón, hay más personas que invierten en ciencia ya que el público suele tener una mayor percepción de en qué se está empleando su dinero. De hecho, muchos de los científicos británicos más reconocidos son divulgadores. Sin embargo, si se considera que el dinero destinado a ciencia va a una “caja negra”, sin saber qué ha ocurrido, es más complicado que haya inversión. Todo esto lo aprendí mientras estaba en Cambridge y era algo que mi jefe siempre me repetía.

«Nuestro futuro está ligado a ser capaces de avanzar en el conocimiento»

P: Tiene un canal en Youtube, GHbiomedicina, en el que sus alumnos explican, en inglés y con un toque de humor, algunos conceptos de la asignatura Genética Humana que usted mismo imparte. ¿Cómo se le ocurrió esta idea?

R: La idea tenía como objetivo enseñar dos competencias que considero cruciales para la formación de mis alumnos.  Por un lado, considero que la ciencia es un trabajo creativo, por lo que veo esencial impulsar la creatividad en los estudiantes. Por otro lado, uno de los retos del científico es ser capaz de mandar mensajes de forma muy clara, y para eso es necesario trabajar la capacidad de síntesis. Pensé en trabajos escritos y también barajé la opción de seminarios; pero estos últimos, al ser en inglés y en directo, podían suponer un problema para muchos de mis alumnos. La mejor herramienta que se me ocurrió, y por la que finalmente me decanté, fue el vídeo. El vídeo es corto, conciso y divertido y permite repetirlo tantas veces como se quiera, evitando así los problemas del directo. Con él también pretendo acostumbrar a mis alumnos al inglés, el lenguaje vehicular de la ciencia.

P: Como profesor, ¿cree que sus estudiantes son conscientes de la situación actual a la que se enfrentan en investigación?

R: Cuando empiezan no, pero poco a poco se van dando cuenta. Por mis manos pasan estudiantes con mucho potencial, pero desgraciadamente, es complicado que todo el mundo acabe haciendo una carrera científica. Yo intento ser realista con mis alumnos, pero siempre les transmito que, aunque es difícil, no es imposible. Sobre todo si tienen movilidad geográfica. De hecho, me gustaría ser optimista y pensar que en unos años la situación mejore al menos algo y se recupere el talento perdido. También he de decir que los que se están marchando ahora se encuentran en una situación muy ventajosa.  Están en el extranjero, lo cual es esencial para completar su formación, y pueden esperar a que mejore la situación en este país y así aprovechar nuevas oportunidades que aparezcan.

«Es como si te pagaran por resolver un crucigrama»

P: ¿Qué mensajes le gustaría transmitir a las nuevas generaciones de jóvenes científico/as?

R: Principalmente que no caigan en la frustración o el desánimo. La situación de la investigación en España pasa por altibajos, y ahora nos encontramos en uno de los “bajos”.  Esto quiere decir que estamos atravesando un período muy malo, pero no tiene por qué ser siempre así. La ciencia, aunque tenga muchos sin sabores, es una labor muy satisfactoria. Es difícil encontrar una profesión más bonita, ya que en definitiva al científico le pagan por resolver problemas pensando. Es como si te pagaran por resolver un crucigrama. Y eso, desde el punto de vista personal, es muy gratificante. Lo que hemos conseguido como sociedad se debe a nuestra capacidad de conocer y de inventar y nuestro futuro está ligado a ser capaces de avanzar en el conocimiento. Formar parte de esa nueva generación que está avanzando en el conocimiento es algo impagable.

 

La fauna superviviente de Chernóbil

La vida se regenera después de la mayor catástrofe nuclear de la historia.

Antes de leer os invito a hacer un rápido juego previo.

Escuelas y parques sin vida, una noria eternamente parada y muñecas rotas y desnudas en las que una vez fueron camas. Hierros oxidados por el paso del tiempo, unos cochecitos que nunca llegaron a funcionar, y una gran pila de recuerdos olvidados. Así se encuentra actualmente Prypiat, vaciada de todo rastro de vida humana. Una ciudad fantasma.  

El 26 de abril de 1986 algo cambiaría para siempre en esta pequeña localidad situada al norte de Ucrania. A las 01h23 local, el reactor 4 de la central de Chernóbil, situada a tan solo 3 kilómetros, explotó debido a un error de manipulación, provocando emisiones radiactivas equivalentes a unas 200 bombas de Hiroshima y contaminando a gran parte de Europa. La mayor catástrofe nuclear de la historia de la humanidad se saldó con la muerte de miles de personas y la evacuación de otras tantas, que nunca regresaron a sus hogares. Las autoridades evacuaron un área de un radio de 30 kilómetros alrededor de la central y que incluía a Prypiat: la zona de exclusión.  Más de treinta años después, la naturaleza de Chernóbil ha recuperado lo que era suyo.

Imagen de los cochechitos de la feria local que esperaba ser inaugurada. Fuente: National Geographic

Un paisaje apocalíptico que sirve de paraíso natural a multitud de especies que han logrado ganarle el pulso a la radiactividad.  Alces, corzos, ciervos y lobos, entre otros, campan a sus anchas. “Hace diez años, era como un pueblo invadido por el bosque. Hoy es como un bosque que se ha tragado unos cuantos edificios”, explica Jim Smith, investigador de la Universidad de Porthsmouth (Reino Unido), que lleva años estudiando las consecuencias del desastre de Chernóbil.

Tras la catástrofe

La liberación de miles de átomos radiactivos, los radionucleidos, desencadenó en los organismos vivos una lucha a la que aún se enfrentan sus células. La radiación produce roturas en el ADN, bien directamente o a través de la aparición de radicales libres, que son ´trozos de moléculas´ que quedan a la deriva y son tóxicos pues destruyen a su vez más moléculas. Aunque existen mecanismos celulares para reparar los daños producidos en el material genético, altas dosis de radiación provocan la irremediable muerte de las células y los tejidos. Es como si una ráfaga de balas atravesara a los organismos.

En los días posteriores al accidente, se encontraron miles de cadáveres de insectos y restos de flores y vegetales en la zona de exclusión. Miles de pinos murieron adoptando una coloración rojiza que le da nombre al conocido como ´bosque rojo´. Según la Organización Mundial de Salud (OMS), murieron unos 9.000 animales, mientras que Greenpeace predice una pérdida de 93.000 de ellos.
Una multitud de animales domésticos, en los meses siguientes, nacieron con anomalías y malformaciones que han suscitado el interés de miles de curiosos y han servido a la industria de la ciencia ficción y a muchos mitos que se han creado en torno a esta cuestión. Y no son los pocos los estudios que avalan el aumento de las tasas de mutación en toda la fauna. Solo cuando las dosis de radiactividad no representaban una amenaza real para sus vidas, la fauna ocupó su hábitat anterior.

Modelo de un cuerpo de perro mutante. Fuente: Museo Nacional de Chernóbil, Kiev, Ucrania.

En la actualidad

Chernóbil se encuentra actualmente en una fase conocida por los científicos como ´fase de radiactividad crónica de dosis bajas´. Aunque las dosis son menores que las de años anteriores, siguen siendo miles de veces superiores a las normales en las zonas más contaminadas. Solo para hacerse una idea, la cantidad de radiación que recibe un individuo durante 10 días en esa zona es semejante a la cantidad de radiación que recibe un estadounidense en todo un año.

“La actividad humana parece dañar más los ecosistemas que un accidente nuclear”

La radiación, sin embargo, no es un obstáculo para la vida. La zona de exclusión está habitada por numerosas especies de animales salvajes; algunos ni siquiera vivían en la zona antes del accidente.  Todos ellos vagan libremente, acompañados de una vegetación exuberante que inunda las inmediaciones de la central y en un lugar totalmente inhóspito donde nadie podría imaginar que la vida fuera posible.

La vegetación florece en los lugares menos esperados. Fuenfe: National Geographic

«La amplia gama de animales que prosperan dentro de la zona evacuada por los humanos tras el accidente nuclear de Chernóbil ilustra la capacidad de recuperación de las poblaciones de fauna silvestre cuando se ven liberadas de las presiones de las actividades humanas», afirma Jim C. Beasley, investigador de la Universidad de Georgia (EE.UU.). De hecho,  el número de grandes mamíferos, incluyendo alces, corzos, ciervos rojos, jabalíes y lobos es similar a los de cuatro reservas naturales de la región, no contaminadas.

“La actividad humana parece dañar más los ecosistemas que un accidente nuclear”, sentencia Smith, en la misma línea. “Esto no quiere decir que la radiación sea buena para los animales, sino que las consecuencias de la ocupación humana, la caza, la agricultura y la silvicultura pueden ser mucho peores”, matiza. También sugiere que “es muy probable que las poblaciones de fauna salvaje actuales sean superiores a las existentes en la zona antes del accidente de la nuclear”. El lince europeo y el oso pardo europeo no habían sido vistos en la región desde hacía casi un siglo y los lobos alcanzan niveles poblacionales siete veces mayores en comparación con reservas no contaminadas por la lluvia nuclear.

Una gran cantidad de fungicidas y pesticidas fue extendida por los campos de los alrededores de Chernóbil durante los años anteriores al accidente. La contaminación química llegó a su fin en abril de 1986. Además, los bosques industriales de los aledaños de la central estaban sometidos a un férreo control por parte de los agricultores. Aquellos árboles que parecían enfermos eran inmediatamente talados para evitar la propagación de la enfermedad. «Desde el accidente, hay muchos árboles enfermos y muertos», asegura el científico Schargai Gassac. A juicio de este experto estudioso de las consecuencias del ser humano en los hábitats, paradójicamente, esta es la causa del aumento de la biodiversidad en los bosques: «Murciélagos, insectos, aves y mamíferos viven en los árboles viejos y huecos”, apunta.

Ejemplar de lobo gris europeo rondando por las inmediaciones de la central. Fuente: Sergey Gashchak

Por su parte, Anders Moller, miembro del Centro Nacional para la Investigación Científica de Francia, critica que Chernóbil sea un paraíso natural, y afirma que este supuesto “se basa únicamente en informes anecdóticos; no en estudios empíricos”. Un estudio de 2009 liderado por este investigador reveló que el número de abejas, mariposas, arañas, saltamontes, y otros invertebrados, había disminuido en mayor medida en lugares contaminados con respecto a otras áreas. El estudio concluye que las especies de estos animales que vivían cerca del reactor nuclear de Chernóbil presentan más deformidades, incluidas la decoloración. «Normalmente los animales (deformados) son devorados con rapidez y es difícil escapar si tus alas no tienen el mismo tamaño», explicó Moller y añadió: «En este caso, encontramos un alto índice de anomalías en animales deformados». Algunas especies desarrollan conductas anormales. En el caso de las arañas, por ejemplo, tejen telas erráticas y tienen más y distintas manchas que otras de su mismo género en otra localización.

Más animales, pero radiactivos.

La realidad es que, independientemente de las alteraciones causadas por la radiación, los alrededores de Chernóbil son el hogar de una rica fauna de mamíferos. Es de esperar que esta fauna ingiera, a través de la cadena alimenticia y de su contacto con el suelo contaminado, miles de átomos de cesio y estroncio a diario. Los animales de Chernóbil son animales radiactivos, a pesar de su buen aparente estado de salud.

“Lo sorprendente es que los animales están logrando sobrevivir y multiplicarse con este enorme número de mutaciones”

Los ratones, a pesar de registrar altos niveles de radiactividad, mantienen una apariencia totalmente normal.  En 1995, un grupo de investigadores estadounidenses de la Universidad de Georgia detectó 46 mutaciones al analizar un gen en nueve ratones que se hallaban dentro de la zona restringida de 30 kilómetros, frente a sólo cuatro mutaciones en 10 roedores recogidos más lejos. “Lo sorprendente es que los animales están logrando sobrevivir y multiplicarse con este enorme número de mutaciones”, dice Ron Chesser, jefe del grupo. ¿Cómo son capaces de vivir y reproducirse como si nada estuviera ocurriendo en su interior?

La respuesta a la pregunta anterior no es fácil. Una posible podría ser que “se encuentran en el límite de lo que pueden tolerar”, explica Chesser. Sin embargo, la explicación más aceptada es que la radiactividad en Chernóbil sigue un patrón desigual, con zonas contaminadas que lindan con no contaminadas. Con la lluvia, los radionucleidos de la nube nuclear cayeron en algunas regiones, algo que no sucedió en aquellas zonas donde no llovió. Por tanto, todos los animales no se ven igualmente afectados.

Una rica fauna habita la zona. Fuente: National Geographic

El accidente de Chernóbil ha convertido la zona en un ´laboratorio´ de gran interés científico donde es posible estudiar los efectos a largo plazo de la radiación sobre la vida.  La enorme presión radiactiva ha provocado adaptaciones en animales que habitualmente se observan tras muchas generaciones. “Ha habido muchos experimentos de laboratorio sobre los efectos de la radiación en animales y plantas, pero estos suelen ser bastante a corto plazo. Chernóbil nos permite estudiar los efectos en los animales después de años de exposición a la radiación”, explica Smith.

Por su parte, Tom Hinton, profesor de la Universidad de Fukushima, manifiesta que los resultados del análisis de la biodiversidad en Chernóbil “pueden ayudar a comprender el potencial impacto ambiental a largo plazo del accidente de Fukushima”.

La adaptación a lo extremo

Chernóbil es un ejemplo más de que la vida se abre paso en las condiciones más extremas. El extremo calor de unas aguas termófilas o las gélidas temperaturas de la Antártida sirven de hogar a diferentes especies que utilizan complejas estrategias de adaptación. La radiactividad no iba a ser menos. Las estrategias de la vida de Chernóbil para enfrentarse al enemigo invisible de la radiación no dejan de ser espectaculares. Algunas especies de plantas son capaces de adaptarse reteniendo la radiación en el tallo o en sus hojas, para evitar la propagación a las semillas.

No menos llamativas son las estrategias de las golondrinas. Timothy Mousseau es profesor de la Universidad del Sur de Carolina y desde 1999 estudia las consecuencias de la contaminación radiactiva sobre las poblaciones de aves, insectos y humanos de la región de Chernóbil, y las diferencias en la sensibilidad a la radiactividad en distintas poblaciones. Los trabajos de Mousseau determinaron que las golondrinas utilizan antioxidantes para combatir la multitud de radicales libres de las zonas más contaminadas. Cuando las golondrinas se quedan sin antioxidantes, los radicales libres destruyen sus tejidos, haciendo visibles los efectos de la radiactividad. Malformaciones como picos deformes o plumaje poco desarrollado, entre otras, fueron encontradas con frecuencia. Así mismo, Mousseau observó especies de estas aves que mostraron mejor capacidad de adaptación y menor daño a nivel genético que otras.

Vuelo de una golondrina en una zona contaminada.
Fuente: El Heraldo

Durante los últimos 31 años, hay poblaciones enteras de golondrinas que han desaparecido, pero las pocas que han sobrevivido son más resistentes. Un equipo internacional liderado por la investigadora Magdalena Ruíz-Rodríguez, de Almería, ha comprobado muy recientemente que ciertas poblaciones de golondrinas que viven en las zonas más contaminadas de Chernóbil presentan una mayor resistencia ante distintas bacterias, en comparación con otras poblaciones de golondrinas que viven en zonas menos o no contaminadas. “Las presiones selectivas en las zonas contaminadas con radioactividad fueron tan altas que sólo aquellos individuos que fueron capaces de sobrevivir a las nuevas condiciones pudieron mantenerse con vida y reproducirse”, apunta la investigadora.

Y así es como se encuentra actualmente Prypiat: vaciada de todo rastro de vida humana, pero rebosante de vida animal y vegetal.  Una fauna y una exhuberante vegetación que ve correr la radiación por su interior pero que ha sabido adaptarse a lo más extremo, sin la presencia del ser humano. Un misterio de la vida que aún los científicos tratan de comprender y una herida aún abierta que recuerda el terrible poder destructivo de nuestra especie. 

https://infogram.com/infographic-modern-1h9j6qxzwy9v2gz

 

Las golondrinas de las zonas más contaminadas de Chernóbil son más resistentes a las bacterias

Los ejemplares con más defensas han sobrevivido y se han reproducido durante los últimos 31 años, a pesar de los altos niveles de radiactividad.

 

 

Un equipo internacional con participación de la Estación Experimental de Zonas Áridas (EEZA), centro adscrito al Consejo Superior de Investigaciones Científicas (CSIC), en Almería, ha demostrado que ciertas poblaciones de golondrinas que viven en zonas de Chernóbil (Ucrania) en las que aún existen niveles altos de radiactividad, presentan una mayor resistencia ante distintas bacterias que aquellas que pueblan zonas menos o no contaminadas.

Un cambio tan drástico en las condiciones ambientales como fue el accidente nuclear de Chernóbil, ocurrido en Ucrania el 26 de abril de 1986, tuvo un gran impacto no solo en los organismos, sino en las relaciones parásito-hospedador.  “Las bacterias tienen una gran capacidad de adaptación a los cambios, y en Chernóbil presentan altas tasas de mutación y resistencia a la radiación.  Por tanto, las golondrinas se enfrentan a `nuevas` comunidades bacterianas que pueden producir otros daños a sus hospedadores”, ha explicado Magdalena Ruiz-Rodríguez, investigadora de la EEZA y autora principal del artículo.  

Golondrina del estudio

En este estudio, a través de un análisis de laboratorio, se enfrentó el plasma sanguíneo de diversas poblaciones de golondrinas, algunas cercanas a la antigua central de Chernóbil, a doce especies de bacterias diferentes. El objetivo era saber si se había producido una adaptación como consecuencia de la convivencia entre estas aves y las comunidades bacterianas que cambiaron rápidamente. Los resultados del análisis indicaron que los individuos criados en las zonas más contaminadas tenían mayor capacidad de resistencia a las bacterias.

Tras el accidente nuclear, el sistema inmune de las golondrinas de Chernóbil fue dañado y debilitado, por lo que su capacidad para defenderse de las bacterias cayó en gran medida. En tan solo 31 años, la radiactividad ha provocado transformaciones que habitualmente se observan en un largo período de tiempo. Apunta Ruiz Rodríguez que probablemente ha existido un proceso de selección natural muy intenso en las zonas con más radiactividad, de manera que solo las golondrinas que tenían más defensas fueron capaces de sobrevivir y reproducirse.

“Durante estos 31 años han muerto muchísimas golondrinas, pero las pocas que han sobrevivido tienen una mayor capacidad de defensa. El resto ha ido muriendo sin dejar descendencia”, ha apuntado la investigadora. “Aunque en algunas poblaciones, como es el caso de las golondrinas, se haya producido una selección sobre los individuos más fuertes, la tendencia de las poblaciones es a desaparecer, ya que las mutaciones disminuyen la esperanza de vida, el éxito de reproducción, y algunas de ellas son directamente letales”, ha concluido.

En una investigación anterior de este equipo se estudiaron las bacterias que degradan las plumas de las golondrinas y la conclusión fue muy similar. Los individuos que poblaban las zonas más contaminadas presentaban mayor capacidad de defensa. “Es decir, las golondrinas que crían en zonas con mayor radiactividad son más resistentes al ataque por bacterias en las plumas, pero también cuentan con más defensas en su sangre”, ha afirmado Ruiz-Álvarez.  Estas investigaciones se separan de la tendencia mayoritaria de estudiar la salud de las especies después del accidente nuclear, para adentrarse en las adaptaciones y cambios que en tan poco tiempo se han producido en ellas.

Timothy Mousseau, otro de los autores de la investigación, y que ha estado estudiando las poblaciones de aves en Chernóbil durante más de una década, demostró en un estudio reciente que las golondrinas Mousseau que viven en zonas altamente contaminadas tenían altas tasas de anomalías, desde albinismo parcial a picos deformados.

Un estudio anterior, del año 2012, realizado por científicos de la Universidad de Portsmouth y publicado en la revista científica Biology Letters concluyó que las golondrinas de los alrededores de la central nuclear de Chernóbil resisten mejor de lo que se pensaba a dosis bajas de radiación. Según Jim Smith, el autor principal de este estudio, el aparente daño a las poblaciones de aves de Chernóbil se debía a diferencias en su hábitat y en la estructura del ecosistema o en su dieta, y no a la contaminación radiactiva. “Los niveles de contaminación radiactiva detectados en los alrededores de la central de Fukushima tampoco deberían causar daño a largo plazo a las aves de esa región”, ha apuntado el experto.

Sin embargo, los efectos del desastre de Chernóbil aún pueden apreciarse en la actualidad. Más de 30 años después, el paisaje sigue siendo desolador y en ciertas zonas apenas pueden verse animales debido a la contaminación radiactiva. Viacheslav Shestopálov, director de un centro científico y de ingeniería de Chernóbil, manifestó que las dosis de baja radiación deterioran la elasticidad de los nervios y la memoria y señaló que los animales residentes en Chernóbil no están a salvo de las mutaciones. Afirmó también que las golondrinas de la zona de Chernóbil tienen 28% de posibilidades de llegar a la próxima estación, mientras que las golondrinas de zonas no contaminadas tienen un 40% y las de España, un 45%.